Monatshefte für Chemie 123, 891-897 (1992)

Monatshefte für Chemie Chemical Monthly © Springer-Verlag 1992 Printed in Austria

Influence of the Medium upon the Rate of Complexing of In^{3+} and Ga^{3+}

M. Panaiotova*, R. Takeva, M. Parlapanski, and L. Shishkova

University of Mining and Geology, Department of Chemistry, Sofia 1156 (Darvenitza), Bulgaria

Summary. The rate and the rate constant of the process of complexing of In^{3+} and Ga^{3+} were evaluated in media containing hydrochloric acid, sulfuric acid or nitric acid and different organic solvents. It was established that the rate of the process is maximum in aqueous-acid environments (without presence of organic additions), in almost all investigated cases in the first minutes of the reaction.

Keywords. Reaction rate; Rate constant; Complexing; Gallium; Indium.

Einfluß des Reaktionsmediums auf die Komplexierungsgeschwindigkeit von In³⁺ und Ga³⁺

Zusammenfassung. Es wurden die Komplexierungsgeschwindigkeiten von In^{3+} und Ga^{3+} in Lösungsmittelsystemen mit Salzsäure, Schwefelsäure oder Salpetersäure und verschiedenen organischen Lösungsmitteln gemessen. Dabei konnte gezeigt werden, daß die Geschwindigkeit in wäßrig-saurem Medium (ohne Zusätzen von organischen Verbindungen) und dann fast immer in den ersten Minuten der Reaktion am größten ist.

Introduction

The separation of Ga^{3+} and In^{3+} from solutions with small concentration is based mainly on the process of complexing of the ions [1-6]. Investigations on the influence of organic solvents on the state of Ga^{3+} and In^{3+} in solutions containing mineral acids are also made [4-6]. It is established that in acid solutions of $In(NO_3)_3$ hydroxo-complexes of In^{3+} are present [7]. Hydroxo-complexes of Ga^{3+} in acid environments are fixed at pH=1.5 up to 2.5, mainly containing $Ga(OH)^{2+}$ [8]. The process of complexing of In^{3+} in acid solutions of chlorides and other halogens is also studied [9]. The coefficients of activity of Ga^{3+} are determined in concentrated aqueous solutions of chlorides, bromides, and thiocyanides. The values of these coefficients may be connected with the process of hydration of the ions [10].

The objective of the present work is to determine the influence of some organic compounds in acid solutions of Ga^{3+} and In^{3+} on the rate of complexing in these solutions.

Experimental Part

Solutions are prepared as follows:

1. $Ga(ClO_4)_3/H_2O/mineral acid (HCl, H_2SO_4 or (HNO_3)/organic compound (CH_3OH, C_2H_5OH, C_3H_7OH or CH_3COCH_3).$

2. In(ClO₄)₃/H₂O/mineral acid (HCl, H₂SO₄ or (HNO₃)/organic compound (CH₃OH, C₂H₅OH, C₃H₇OH or CH₃COCH₃).

The concentration of Ga^{3+} in the solutions was 57.3×10^{-5} mol/l (of $In^{3+} 34.85 \times 10^{-5}$ mol/l, respectively). The concentration of HNO₃ (HCl or H₂SO₄, respectively) was 0.3 mol/l. Experiments were carried out also with solutions containing a mineral acid with a concentration of 3 mol/l. The aqueous-organic media were obtained by addition of organic components mentioned above to the prepared solutions in quantity of 60% vol.

The change of the concentration of Ga^{3+} and In^{3+} in so prepared systems was determined periodically by using a spectro-photometrical method with employment of 1-(2-pyridil-azo)-resorcinol monosodium. The collected data were used for drawing of the kinetic curves i. e. the curves "concentration of the metal ion versus the time". The kinetic curves for In^{3+} in solutions of 3 mol/l HNO_3 , HCl, and H₂SO₄ are shown in Figs. 1-3.

Results and Discussion

As it may be readily seen from the curves shown in Figs. 1-3 an intense development of the process of complexing occurs during the first 2-5 minutes only. It should be noted that a similar development of the process was found for all cases under consideration. The variation of the concentration of the metal ion was determined until it began to increase or to remain unchanged which may be explained by

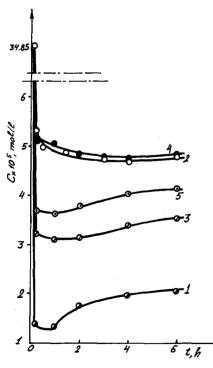


Fig. 1. Variation in the concentration of In^{3+} in solutions of 3 mol/l HNO_3 : *I* without organic solvent; 2 with ethanol; 3 with methanol; 4 with n-propanol; 5 with acetone

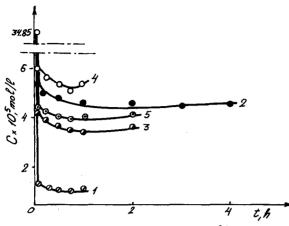


Fig. 2. Variation in the concentration of In^{3+} in solutions of $3 \text{ mol/l } H_2SO_4$: *1* without organic solvent; *2* with ethanol; *3* with methanol; *4* with n-propanol; *5* with acetone

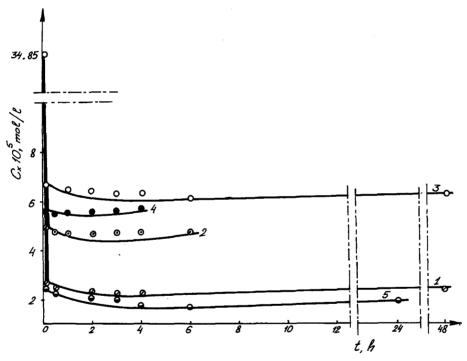


Fig. 3. Variation in the concentration of In^{3+} in solutions of 3 mol/l HCl: *1* without organic solvent; *2* with ethanol; *3* with methanol; *4* with n-propanol; *5* with acetone

development of a process of destruction of the complexes or by establishment of an equilibrium, respectively. Obviously, the kinetics of complexing of Ga^{3+} or In^{3+} may be divided into two periods. The first, in which the reaction takes place with a very high rate. The duration of this period is about 2-5 minutes. In the second one, the duration of which for distinct solutions is very different (from 20 minutes up to 198 hours) the rate of the process is much slower.

Addition of organic solvent			Rate of	Rate of Complexing, <i>W</i> , mol/l·h × 10^5	, W, mol	$/1 \cdot h \times 10^5$						
	In ³⁺ in ().3 mol/l H ₂ SO	4In ³⁺ in 3	mol/l H ₂ SC)4In ³⁺ in	0.3 mol/l HCl	In ³⁺ in	3 mol/l HCl	In ³⁺ in (\ln^{3+} in 0.3 mol/l H ₂ SO ₄ In ³⁺ in 3 mol/l H ₂ SO ₄ In ³⁺ in 0.3 mol/l HCl \ln^{3+} in 3 mol/l HCl \ln^{3+} in 0.3 mol/l HNO ₃ In ³⁺ in 3 mol/l HNO ₃	Jn ³⁺ in 2	1 mol/l HNO3
	1. period	1. period 2. period	1. period	1. period 2. period 1. period 2. period	1. perioc	1 2. period	1. period	1. period 2. period	1. period	2. period	1. period	1. period 2. period
	(0-7 min)	u)	(uim 2—0)	()	(uim 20)	(u	(uim 2—0)	(r	(uim 20)	ſ	(uim 2–0)	
1	1 006.2	1 006.2 0.6558	1 004.7	004.7 0.4326	947.4	0.1395	964.2	0.0821	988.8	0.1147	1 003.8 0.0621	0.0621
		(2-45 min)		(2-45 min)	~	(2-45 min)		(2 min-6 h)		(2 min-5 h)		(2-60 min)
Methanol	930.6	0.7966	917.1	0.9207	881.4	1.0448	846.9	0.0526	916.5	0.2999	946.2	0.2172
		(2-60 min)		(2-60 min)	~	(2-60 min)		(2 min-12 h)		(2-60 min)		(2-60 min)
Ethyl alcohol	898.2	0.4465	883.8	0.3168	873.0	0.4474	897.3	0.2483	870.3	0.0821	885.6	0.1289
		(2-45 min)		(2 min-3 h)	((2 min–2 h)		(2 min–1 h)		(2 min-5 h)		(2 min-5 h)
n-Propyl alcohol	876.3	1.2698	864.9	1.2558	846.9	0.1805	878.4	0.1928	881.0	0.2932	892.2	0.0605
		(2-45 min)		(2-45 min)	~	(2 min-12 h)	~	(2-30 min)		(2 min-90 h)		(2 min-24 h)
Acetone	922.2	0.8791	914.1	0.6698	967.2	0.3857	972.61	0.1307	911.7	0.0517	934.8	0.0517
		(2-45 min)		(2-45 min)	~	(2-30 min)		(2 min-6 h)		(2-60 min)		(2-60 min)

Table 1. Rate of the reaction of complexing of In^{3+} in different media

894

Addition of	Average ra	te constants.	K, min ⁻¹			
organic solvent	for In^{3+} in	H_2SO_4	for In ³⁺ ir	HCl	for In ³⁺ ir	HNO ₃
	1. period	2. period	1. period	2. period	1. period	2. period
_	95.7386	0.4549	73.8063	0.0374	92.1941	0.0600
Methanol	64.8799	0.2331	52.6915	0.0221	66.6988	0.0695
Ethyl alcohol	57.3948	0.0709	56.3336	0.0700	54.9609	0.0203
Propanol	53.6573	0.2552	52.4437	0.1125	56.5475	0.0324
Acetone	63.1751	0.2026	78.8237	0.1127	64.5205	0.0128

Table 2. Rate constants of the reaction of complexing of In^{3+} in different media

The average rate of complexing (W) was estimated by means of a graphical differentiation of the kinetic curves. The obtained values of W are shown in Table 1 for In^{3+} and in Table 3 for Ga^{3+} . The kinetic order of the process was determined by replacement of the experimental data in the kinetic equations of mono-molecular, bi-molecular and three-molecular reactions. It was established that the data satisfy the kinetic equations of mono-molecular reactions for both kinetic periods, for all investigated cases. The process of complexing of In^{3+} and Ga^{3+} in the used media should be considered as a reaction of first order. Further, the numerical values of the rate constants K of the process were evaluated by using the kinetic equation of mono-molecular reactions. The obtained values of K are shown in Tables 2 and 4 for In^{3+} and Ga^{3+} , respectively.

From the data shown in Tables 1-4 a few conclusions may be drawn:

1. The main amount of the complexes of In^{3+} and Ga^{3+} in the investigated media is obtained in the first minutes of the process of complexing. This observation may be useful for the manufacture of metallic gallium and indium and their compounds by means of complexing.

2. The process of complexing takes place with a higher rate in pure aqueousacid environments without organic solvent additives.

Addition of	Average ra	ite constants	K, min ^{-1}			
organic solvent	for Ga ³⁺ i	n H ₂ SO ₄	for Ga ³⁺ i	n HCl	for Ga ³⁺ i	n HNO ₃
	1. period	2. period	1. period	2. period	1. period	2. period
	90.1253	0.2003	28.4483	0.5690	51.8952	0.0614
Methanol	5.1017	0.084	2.5594	-	13.7098	0.0359
Ethyl alcohol	8.9314	0.0985	4.1553	0.6671	9.2416	0.7053
Propanol	_	_	-	-	6.3215	
Acetone	3.3905	0.1990	0.4076		3.3608	0.0412

Table 4. Rate constants of the reaction of complexing of Ga³⁺ in different media

Addition of organic solvent			Rate of	Rate of Complexing, W , mol/l·h × 10 ⁵	W, mol/	$1 \cdot h \times 10^5$						
0	Ga ³⁺ in (Ga^{3+} in 0.3 mol/l H ₂ SO ₄		Ga^{3+} in 3 mol/l H ₂ SO ₄ Ga^{3+} in 0.3 mol/l HCl Ga^{3+} in 3 mol/l HCl	Ga ³⁺ in 0	.3 mol/l HCl	Ga ³⁺ in 3m		Ga ³⁺ in 0.	Ga^{3+} in 0.3 mol/l HNO ₃ Ga^{3+} in 3 mol/l HNO ₃	Ga ³⁺ in 3	mol/l HNO3
	1. period (0-2 min)	1. period 2. period (0–2 min)	1. period (0-2 min)	1. period2. period1. period2. period(0-2 min)(0-2 min)(0-2 min)	1. period (0-2 min)	2. period	1. period (0-2 min)	2. period	1. period 2. period (0-2 min)	2. period	1. period (0-2 min)	1. period 2. period (0-2 min)
	1 634.0	1 634.0 0.2930	1 638.0	638.0 0.5520 1 167.1 17.0512 1 041.3	1 167.1	17.0512	1 041.3	2.1637 1 321.51 0.5198	1 321.51	0.5198	1 484.7 2.6326	2.6326
		(2-45 min)		(2-30 min)		(2-45 min)		(2 min-6 h)	_	(2 min-12 h)		(2 min-2 h)
Methanol	281.1	3.6279	267.0	5.1628	129.3	6.7384	152.1	3.7241	557.4 0.1587	0.1587	696.6	1.8654
		(2-45 min)		(2-45 min)		(2-15 min)		(2-60 min)		(2 min-168 h)		(2 min-6 h)
Ethyl alcohol	455.0	3.4884	431.0	3.9130	230.1	4.6154	215.1	6.3333		, ,	454.2	3.9605
		(2-45 min)		(2-25 min)		(2-15 min)		(2-20 min)				(2 min-4 h)
n-Propyl alcohol	1	I	I	1	. [I	1	1	I	1	324.9	, 1
Acetone	215.1	17.2800	152.1	6.0000	44.1	4.0800	5.040	5.040 4.7143	J	I	180.3	1.7430
		(2-30 min)		(2-25 min)		(2-30 min)		$(2-30 \min)$				(2 min-6h)

Table 3. Rate of the reaction of complexing of Ga^{3+} in different media

896

Rate of Complexing of In³⁺ and Ga³⁺

3. In general, the rate of the process of complexing is higher in solutions of H_2SO_4 in comparison with solutions of HNO_3 and HCl. This observation is valid especially for the complexing of gallium.

4. The rate of the process of complexing of Ga^{3+} in organic-aqueous environments is slower than for In^{3+} .

References

- [1] Krans K. A., Nelson F., Smith J. (1954) J. Phys. Chem. 58: 11
- [2] Krans K. A., Michelson D., Nelson F. (1959) J. Am. Chem. Soc. 81: 3204 and 3207
- [3] Irving H. M., Rossotti F. I. (1952) Analist 77: 801
- [4] Alimarin I. P., Tzintzevitch E. P., Usova E. P. (1961) Newspaper of the University of Moscow (in Russ.) 2: 31
- [5] Shishkova L. G. (1982) Thesis (in Bulg.) Sofia
- [6] Shishkova L. G. (1989) Annual of the Higher Institute of Mining and Geology (in Bulg.) 35 III: 267
- [7] Caminiti R., Johanson G., Toth I. (1986) Acta Chem. Scand. A40: 435
- [8] Davidov U. P., Kudriashov V. P., Mironov V. P. (1988) C. R. AN BSSR (chem. ser.) 5: 25
- [9] Strijov N. K. (1987) J. Gen. Chem. (Russ) 57: 1142
- [10] Kremer V. A. (1989) Proceedings of Conference "Chemistry and Using of Non-aqueous Solutions" (in Russ) Harkov 1: 124

Received August 6, 1991. Revised October 14, 1991. Accepted October 22, 1991